CSSE 220 Day 7

Fundamental Data Types, Constants,
Console Input, More Text Formatting

Check out FundamentalDataTypes from SVN

Questions

Today’s class

» Quiz questions 1-3 review choosing fields for
a class

» The rest of class is review of fundamental
data types:

- Work through the slides, quiz, and related exercises
at your own pace

> Please ask questions as needed!
- Start the HW when you are done

Q1-3

Data Type Smorgasbord

» Basic Types and Casts

» Big Integers

» Constants

» Strings and Conversions

» Understanding Error Messages
» String Input and Output

Basic Types (again)

Table 1 Primitive Types

Type Description
int The integer type, with range —2,147,483,648 . .. 2,147,483,647
(about 2 billion)
byte The type describing a single byte, with range -128 ... 127
short The short integer type, with range ~32768 ... 32767
long The long integer type, with range

-9,223,372,036,854,775,808 . .. 9,223,372,036,854,775,807

double The double-precision floating-point type, with a range of
about +10°% and about 15 significant decimal digits

float The single-precision floating-point type, with a range of
about +10°% and about 7 significant decimal digits

char The character type, representing code units in the
Unicode encoding scheme (see Advanced Topic 4.5)

=
=
=
=

boolean The type with the two truth values false and true (see Chapter 5)

Table from Horstmann, Big Java (3e),
John Wiley & Sons, Copyright 2007

Size

4 bytes

1 byte
2 bytes

8 bytes

8 bytes

4 bytes

2 bytes

1 bit

Conversions and Casts

» Consider:
int i, j;
double d4d, e;
i=10;
d =20.1;
e =1i; // OK
j = d; // ERROR!
» Why the difference?
> Assigning a double to an int can result in information
loss (the fractional part)
» Add a cast to tell Java that we understand there could
be a problem here:
j = (int) d; // OK
» But what happens to the fractional part of d?
<Jl is truncated (lost)

Q4,5

Example

» Look at RoundAndRound.java
- What does it do?

» Run it and try some different numbers, like:
- 1.004
> 1.005
- 1.006
- -1.006
> 4,35

» Zoinks! What's up with these, especially the
last one?
- Try changing the %£ format specifier to %$24.20f

Q6

When Nine Quintillion Isn’t Enough

» BigInteger for arbitrary size integer data

» BigDecimal for arbitrary precision floating
point data

» We plan to revisit Biglnteger later in the
course

Constants in Methods

» Constants let us avoid Magic Numbers
- Hardcoded values within more complex expressions

» Why bother?

» Code becomes more readable, easier to change,
and less error-prone!

» Example:
final double relativeEyeOutset = 0.2;
final double relativeEyeSize = 0.28;
final double faceRadius = this.diameter / 2.0;
final double faceCenterX this.x + faceRadius;
final double eyeDiameter relativeEyeSize * this.diameter;

final tells Java to stop us from
changing a value (and also gives a
“hint” to the compiler that lets it
generate more efficient code)

Q7,8

Constants in Classes

» We’ve also seen constant fields in classes:
- public static final int FRAME_WIDTH = 800;

» Why put constants in the class instead of a
method?
1. So they can be used by other classes
2. So they can be used by multiple methods
3. So they are easier to find and change

Q9

Strings in Java

» Already looked at some String methods
» Can also use + for string concatenation
» Quiz question:

- Look at StringFoo.java

- Based on the four uses of + in main(), can you
figure out how Java decides whether to do string
concatenation or numeric addition?

- Decide what the 3 commented-out uses of + in
main() will print, then uncomment them and see if
you were right.

- Do you see why they work as they do?

Q10

Converting Strings to Numbers

» You can convert strings to numbers:

- double Double.parseDouble(String n)
- 1int Integer.parselInt (String n)
» Can also convert numbers to strings:
> String Double.toString(double d)
- String Integer.toString(int 1)
» Or maybe easier:

o €633 + d

0 + 1

.

Conversions Gone Awry

» Go back to StringFoo.java

» Uncomment the last line of main ():
o StringFoo.helper() ;

» Run it
» What happened?

.

Reading Exception Traces

The first line will usually give you

a hint about what went wrong.

e —
E_f, Problers (@ Javado: (@, Declaration (@ Tasks LS a0 2 | Repnsitnries}

Zterminated = StringFaoo [Java Application\NC\Program Files) Javaljrea)binjavaw,. exe (Dec 13, 2009 2:37:51 PM)

Exception in thread "main®™ java. lang.NumberFormatException: For input string: 42,17
at Java. lang.MNunmberFormatException. forInput3tring (Unknown Jource)

at java. lang. Integer.parselnt (Unknown Jource)
at java. lang. Integer.parselnt (Unknown Jource)
at StringFoo.helper (3tringFoo. java:d42)
at ItringFoo.main (AN ringFoo.javarid)

I'tnm a mess. 42

42 T'tn & mwess.
G4
I'tn & tmess.1'm a mess.

The first line of your code
listed will give you a clue

The error output appears at the top
of the Console window (even
though the error occurred after the

where to look.

output that is displayed).

Q11

char Type in Java is Like C’s

» In Python:
o “Thi1s i1s a string”
- ‘and so 1s this’

» In Java:

o “This i1s a string”
> This is a character: ‘R’

o ‘Thi1s 1s an error’

.

Iterating Over Strings in Java

» Can use charAt(index)
» Example:

String message = "Rose-Hulman";
for (int i=0; i < message.length(); i++) {
System.out.println (message.charAt(i)) ;
}
» charAt() returns a 16-bit char value*

» Exercise: Work on TODO items in
StringsAndChars.java

* Unfortunately there are more than 2 (65536) symbols
in the known written languages. See Character API

docs for the sordid details.

Reading Console Input with

java.util.Scanner

» Creating a Scanner object:

o Scanner inputScanner =
new Scanner (System.in) ;

» Defines methods to read from keyboard:

o inputScanner .nextInt ()

o inputScanner .nextDouble ()
o inputScanner .nextLine ()

o inputScanner.next ()

» Exercise: Look at ScannerExample.java

- Add printlin’s to the code to prompt the user for
the values to be entered

.

Formatting with
printf and format

Table 3 Format Types o ', Table 4 Format Flags
4 o L TR S ' Fla Meanin Exampl
Code Type ~ Example & g xample
‘ ' B o o # Left alignment 1.23 followed by spaces
d 1 1 WY O . . -
Decimal integer 123 0 Show leading zeroes 001.23
X Hexadecimal i;iteger 7B + Show a plus sign for positive numbers +1.23
0 Octal integer 173 (Enclose negative numbers in parentheses (1.23)
p Fixed floati . 12.30 Show decimal separators 12,300
1xed hoatung-point .
&P S - & Convert letters to uppercase 1.23E+1
e Exponential floating-point ~ ~ 1.23e+1.
g General floating-point ~~ 12.3
(exponential notation used for ,'
very large or very small values) : MOI’e OptIOI’]S than |n C

s Stﬁng - Tax:

| used a couple in

n

Platform-independent line end

today’s examples.
Can you find them?

Tables from Horstmann, Big Java (3e),
John Wiley & Sons, Copyright 2007

Q12

Formatting with
printf and format

» Printing:
o System.out.printf (V%$5.2f%n”, Math.PI);
» Formatting strings:

° String message =
String.format (“%$5.2f%n”, Math.PI);

» Display dialog box messages
o JOptionPane.showMessageDialog(null, message) ;

Q13,14

