
Fundamental Data Types, Constants,
Console Input, More Text Formatting

Check out FundamentalDataTypes from SVN

 Quiz questions 1-3 review choosing fields for
a class

 The rest of class is review of fundamental
data types:
◦ Work through the slides, quiz, and related exercises

at your own pace

◦ Please ask questions as needed!

◦ Start the HW when you are done

Q1-3

 Basic Types and Casts

 Big Integers

 Constants

 Strings and Conversions

 Understanding Error Messages

 String Input and Output

Table from Horstmann, Big Java (3e),
John Wiley & Sons, Copyright 2007

 Consider:

int i, j;

double d, e;

i = 10;

d = 20.1;

e = i; // OK

j = d; // ERROR!

 Why the difference?

◦ Assigning a double to an int can result in information
loss (the fractional part)

 Add a cast to tell Java that we understand there could
be a problem here:

j = (int) d; // OK

 But what happens to the fractional part of d?

◦ It is truncated (lost)

Q4,5

 Look at RoundAndRound.java
◦ What does it do?

 Run it and try some different numbers, like:
◦ 1.004

◦ 1.005

◦ 1.006

◦ -1.006

◦ 4.35

 Zoinks! What’s up with these, especially the
last one?
◦ Try changing the %f format specifier to %24.20f

Q6

 BigInteger for arbitrary size integer data

 BigDecimal for arbitrary precision floating
point data

 We plan to revisit BigInteger later in the
course

 Constants let us avoid Magic Numbers
◦ Hardcoded values within more complex expressions

 Why bother?

 Code becomes more readable, easier to change,
and less error-prone!

 Example:
final double relativeEyeOutset = 0.2;

final double relativeEyeSize = 0.28;

final double faceRadius = this.diameter / 2.0;

final double faceCenterX = this.x + faceRadius;

final double eyeDiameter = relativeEyeSize * this.diameter;

…

Q7,8

final tells Java to stop us from
changing a value (and also gives a
“hint” to the compiler that lets it
generate more efficient code)

 We’ve also seen constant fields in classes:

◦ public static final int FRAME_WIDTH = 800;

 Why put constants in the class instead of a
method?
1. So they can be used by other classes

2. So they can be used by multiple methods

3. So they are easier to find and change

Q9

 Already looked at some String methods

 Can also use + for string concatenation

 Quiz question:
◦ Look at StringFoo.java

◦ Based on the four uses of + in main(), can you
figure out how Java decides whether to do string
concatenation or numeric addition?

◦ Decide what the 3 commented-out uses of + in
main() will print, then uncomment them and see if
you were right.

 Do you see why they work as they do?

Q10

 You can convert strings to numbers:

◦ double Double.parseDouble(String n)

◦ int Integer.parseInt (String n)

 Can also convert numbers to strings:

◦ String Double.toString(double d)

◦ String Integer.toString(int i)

 Or maybe easier:

◦ “” + d

◦ “” + i

 Go back to StringFoo.java

 Uncomment the last line of main():
◦ StringFoo.helper();

 Run it

 What happened?

Q11

The first line will usually give you
a hint about what went wrong.

The first line of your code
listed will give you a clue

where to look.
The error output appears at the top

of the Console window (even

though the error occurred after the

output that is displayed).

 In Python:

◦ “This is a string”

◦ „and so is this‟

 In Java:

◦ “This is a string”

◦ This is a character: „R‟

◦ ‘This is an error’

 Can use charAt(index)

 Example:

String message = "Rose-Hulman";

for (int i=0; i < message.length(); i++) {

System.out.println(message.charAt(i));

}

 charAt() returns a 16-bit char value*

 Exercise: Work on TODO items in
StringsAndChars.java

* Unfortunately there are more than 216 (65536) symbols
in the known written languages. See Character API

docs for the sordid details.

 Creating a Scanner object:
◦ Scanner inputScanner =

new Scanner(System.in);

 Defines methods to read from keyboard:
◦ inputScanner.nextInt()

◦ inputScanner.nextDouble()

◦ inputScanner.nextLine()

◦ inputScanner.next()

 Exercise: Look at ScannerExample.java
◦ Add println’s to the code to prompt the user for

the values to be entered

Tables from Horstmann, Big Java (3e),
John Wiley & Sons, Copyright 2007

More options than in C.
I used a couple in
today’s examples.
Can you find them?

Q12

 Printing:
◦ System.out.printf(“%5.2f%n”, Math.PI);

 Formatting strings:
◦ String message =

String.format(“%5.2f%n”, Math.PI);

 Display dialog box messages
◦ JOptionPane.showMessageDialog(null, message);

Q13,14

Create a CubicPlot class as
described in the HW

